科学政策
第一天项目

建立一个由复合管的国家网络,以减少温室气体排放

05.22.23 | 9分钟阅读 | Text by Stuart Levenbach, PhD & Wilson Leong

概括

65,000 miles of pipeline: that’s the distance that may be necessary to achieve economy-wide net-zero emissions by 2050, according to a Princeton University学习。美国正处于建造大量管道网络以运输氢和二氧化碳的网络,这是由《基础设施投资和就业法》和《减少通货膨胀法》激励的。然而,典型钢管道产生的生命周期排放量为27.35 kg二氧化碳EQ每英尺1。Which means 65,000 miles would result in nearly 9.4 million megatons of carbon dioxide eq (equal to over每年200万辆乘用车) produced just from steel pipeline infrastructure alone.

由复合材料制成的管道为降低排放提供了一种途径。复合管由多个不同材料的多层组成 - 通常是热塑性聚合物,作为带有纤维或颗粒填充剂等增强材料的主要结构层,以增加强度和刚度。某些类型的生命周期排放量比典型的钢管道少三分之一。根据应用程序,复合管道可以更安全,更便宜。但是,在管道和危险材料和安全管理下(PHMSA)发出复合管的许可的过程比钢需要更长的时间,对于氢和二氧化碳,该行业完全缺乏监管标准。重新授权保护我们的管道基础设施和增强安全性(PIPES)法案提供了一个绝佳的机会,可以审查有关新的,不那么发射的管道技术的政策。

挑战和机会

挑战

The United States is on the verge of a clean energy construction boom, expanding far beyond wind and solar energy to include infrastructure that utilizes hydrogen and carbon capture. The pump has been primed with $21 billion for demonstration projects or “hubs” in the Infrastructure Investment and Jobs Act and reinforced with another $7 billion for demonstration projects and at least $369 billion in tax credits in the Inflation Reduction Act. Congress recognized that pipelines are a critical component and provided $2.1 billion in loans and grants under the Carbon Dioxide Transportation Infrastructure Finance and Innovation Act (CIFIA).

The United States is crisscrossed by pipelines. Approximately330万英里of predominately steel pipelines convey trillions of cubic feet of natural gas and hundreds of billions of tons of liquid petroleum products each year. A far fewer5,000 miles用于运输二氧化碳,仅用于1,600英里are dedicated to hydrogen. Research suggests the existing pipeline network is nowhere near what is needed. According to Net Zero America, approximately 65,000 miles of pipeline will be needed to transport captured carbon dioxide to achieve economy-wide net zero emissions in the United States by 2050. The study also identifies a need for several thousand miles of pipelines to transport hydrogen within each region.

用钢制成管道是一个碳密集型过程,钢制造业的一般情况是7%至9%全球温室气体排放。正在进行的努力,以降低钢(即“绿色钢”)产生的排放,通过更有效,捕获和储存发射的二氧化碳,回收废钢与可再生能源相结合,并使用低排放的氢。但是,对于许多这样的缓解策略,成本是一个重大挑战。将全球钢铁资产转变为净零到2050年,兼容技术还为2000亿美元,除了基线平均值$31 billion annually简单地满足需求不断增长。

机会

Given the vast network of pipelines required to achieve a net-zero future, expanding use of composite pipe provides a significant opportunity for the United States to lower carbon emissions. Composite materials are highly resistant to corrosion, weigh less and are more flexible, and have improved flow capacity. This means that pipelines made from composite materials have a longer service life and require less maintenance than steel pipelines. Composite pipe can be four times faster to install, require one-third the labor to install, and have significantly lower operating costs.2随着技术的进步使这些材料更可靠和成本效益,复合管的使用将继续增长。

Use of composite pipe is also expanding as industry seeks to improve its sustainability. We performed a lifecycle analysis on thermoplastic pipe, which is made by a process called extrusion that involves melting a thermoplastic material, such as high-density polyethylene or polyvinyl chloride, and then forcing it through a die to create a continuous tube. The tube can then be cut to the desired length and fittings can be attached to the ends to create a complete pipeline. We found that the lifecycle emissions from thermoplastic pipe were 6.83 kg carbon dioxide eq/ft and approximately 75% lower than an equivalent length of steel pipe, which has lifecycle emissions of 27.35 kg carbon dioxide eq/ft.

这些估计不包括泄漏的潜在差异。具体而言,复合管具有连续的结构,可以生产更长的管道部分,从而减少接头和焊缝。相比之下,由于制造过程中的限制,金属管通常在较短的部分中制造。这意味着需要更多的关节和焊缝将部分连接在一起,这可能会增加泄漏或其他问题的风险。乐动冠军此外,美国大约一半的钢管管道已有50多年的历史,增加了泄漏和维护成本的可能性。3复合管的另一个优点是可以通过钢管道将其拉出,从而将老化的钢管道重新利用以运输不同的材料,同时还减少了对新的通行权和相关许可的需求。

尽管使用复合材料的优点,但尚未制定标准以允许安全许可运输超临界二氧化碳4and hydrogen. At the federal level, pipeline safety is administered by the Department of Transportation’s Pipeline and Hazardous Materials Administration (PHMSA).5为了确保能源和其他危险材料的安全运输,PHMSA建立了国家政策,制定并执行标准,教育和进行研究以防止事件。有监管标准可以在钢管中运输超临界二氧化碳。6但是,在超临界液体,气体或亚临界液态状态下,没有复合管的标准来运输氢或二氧化碳。

重新利用现有的基础架构至关重要,因为无论类型如何,管道的选址通常都具有挑战性。尽管天然气管道和一些石油管道可以根据《联邦法律》(例如《天然气法》或州际商业法案)援引明显的领域规定,但没有此类联邦当局用于氢和二氧化碳管道。在某些州,具体法规涉及二氧化碳管道的显着领域。这些法律通常建立启动知名领域程序的程序,确定要支付给财产所有人的赔偿金额,并解决与知名领域有关的争议。但是,在诸如州等州正在进行的努力Iowa限制使用国家当局授予杰出领域的二氧化碳管道。杰出领域的挑战强调了允许将现有管道重新利用以运输二氧化碳和氢的技术提供的机会。

Plan of Action

我们如何在同时使用较低的发射材料的同时,如何建立一个庞大的二氧化碳和氢管道网络?

建议1.制定安全标准,以使用复合管运输氢和超临界二氧化碳。

PHMSA, industry, and interested stakeholders should work together to develop safety standards to transport hydrogen and supercritical carbon dioxide using composite pipe. Without standards, there is no pathway to permit use of composite pipe. This collaboration could occur within the context of PHMSA’s recent announcement to update its standards for transporting carbon dioxide, which is being done in response to an incident in 2020 inSartartia,MS

理想情况下,可以使用PHMSA的正常过程而不是特殊许可(例如49CFR§195.8)发出许可证。制定标准需要几年的时间,因此启动标准设定的过程至关重要,以便可以将复合管用于能源资助的氢枢纽和碳捕获示范项目。

Europe is ahead of the United States in this regard, as the classification companyDNVis currently undertaking a joint industry project to review the cost and risk of using thermoplastic pipe to transport hydrogen. This work will inform regulators in the European Union, who are currently revising standards for hydrogen infrastructure. The European Clean Hydrogen Alliance recently adopted a “Roadmap on Hydrogen Standardization” that expressly recommends setting standards for non-metallic pipes. To the extent practicable, it would benefit export markets for U.S. products if the standards were similar.

建议2.简化改装钢管道的许可过程。

国会应通过根据《国家环境政策法》(NEPA)制定立法绝对排斥来简化钢管的改造。NEPA要求联邦机构评估可能对环境产生重大影响的行动。分类排除(CES)是确定没有重大环境影响的行动类别,因此不需要环境评估(EA)或环境影响声明(EIS),然后才能进行。可以在几天内处理CE,从而加快对合格行动的审查。

The CE process allows federal agencies to avoid the time and expense of preparing an EA or EIS for actions that are unlikely to have significant environmental effects. CEs are often established through agency rulemaking but can also be created by Congress as a “legislative CE.” Examples include minor construction activities, routine maintenance and repair activities, land transfers, and research and data collection. However, even if an action falls within a CE category, the agency must still conduct a review to ensure that there are no extraordinary circumstances that would warrant further analysis.

Given the urgency to deploy clean technology infrastructure, Congress should authorize federal agencies to apply a categorical exclusion where steel pipe is retrofitted using composite pipe. In such situations, the project is using an existing pipeline right-of-way, and there should be few, if any, additional environmental impacts. Should there be any extraordinary circumstances, such as substantial changes in the risk of environmental effects, federal agencies would be able to evaluate the project under an EA or EIS. A CE does not obviate the review of safety standards and other applicable, substantive laws, but simply right-sizes the procedural analysis under NEPA.

建议3.探索在《管道重新授权法》中改善复合管的政策框架的机会。

Both of the aforementioned ideas should be considered as Congress initiates its reauthorization of the Protecting Our Infrastructure of Pipelines and Enhancing Safety (PIPES) Act of 2020. Among other improvements to pipeline safety, the PIPES Act reauthorized PHMSA through FY2023. As Congress begins work on its next reauthorization bill for PHMSA, it is the perfect time to review the state of the industry, including the potential for composite pipe to accelerate the energy transition.

建议4.在资助演示项目时,请考虑建筑材料的嵌入式排放。

清洁能源示范办公室在评估资金项目时应考虑建筑材料的嵌入式排放。有计划考虑嵌入建筑材料排放的申请人可以在选择过程中获得额外的重量。

Recommendation 5. Support research and development of composite materials.

Composite materials offer advantages in many other applications, not just pipelines. The Office of Energy Efficiency and Renewable Energy (EERE) should support research to further enhance the properties of composite pipe while improving lifecycle emissions. In addition to ongoing efforts to lower the emissions intensity of steel and concrete, EERE should support innovation in alternative, composite materials for pipelines and other applications.

Conclusion

最近的立法将在清洁能源基础设施中引发下一代的建设,资金还创造了一个机会,以较低的温室气体排放量来部署建筑材料。这很重要,因为使用高放机流程构建大量管道网络会削弱立法的目标。但是,通过未提供使用复合材料的途径,监管代码仍然是一种障碍。PHMSA和行业应开始讨论以创建必要的安全标准,国会应与行业和监管机构合作,在改装钢管管道时简化NEPA流程。随着美国开始建造氢和碳捕获,利用和存储网络,对管道的重新授权为大大降低排放提供了绝佳的机会。

Frequently Asked Questions
您如何计算复合管的生命周期分析(LCA)?

We compared two types of pipes: 4” API 5L X42 metallic pipe vs. 4” Baker Hughes non-metallic next generation thermoplastic flexible pipe. The analysis was conducted using FastLCA, a proprietary web application developed by Baker Hughes and certified by an independent reviewer to quantify carbon emissions from our products and services. The emission factors for the various materials and processes are based on the ecoinvent 3.5 database for global averages.


  • 挠性管生产从2020年的数据production year and represents transport, machine, and energy usage at the Baker Hughes’ manufacturing plant located in Houston, TX.
  • 所有用于弹性管道的原材料和能源输入都直接来自工程和工程人员的工程和工厂制造数据,并通过工程和制造人员进行了验证,并代表实际使用以制造柔性管道。
  • 金属管道生产的所有数据均来自API 5L X42附表80管道规格,并代表来自阿拉巴马州的运输和能源用途,以从全球平均值中生产生产。
  • 所有用于热滚动钢的原材料和能量输入均根据3.5个数据库发射因子计算出来。所有相关的生产步骤和过程均已建模。
  • 所有次要过程均来自Simapro 9.0.0.30中应用的Ecoinvent 3数据库(截至2018年11月的3.5版)。
  • 结果是使用IPCC 2013 GWP 100A(IPCC AR5)计算的。
使用复合管运输氢和二氧化碳的安全风险是什么?

与钢管类似,使用复合管运输氢和二氧化碳会带来某些安全风险,必须仔细管理和缓解:


  • 氢气可以扩散到复合材料中并引起封闭,从而导致管道破裂和故障。
  • 管道中使用的复合材料必须与氢和二氧化碳兼容。不兼容会导致渗透导致管道降解,从而导致泄漏或破裂。
  • Both hydrogen and carbon dioxide are typically transported at high pressure, which can increase the risk of pipe failure due to stress or fatigue.
  • 二氧化碳可能对某些金属具有腐蚀性,这可能导致管道腐蚀和最终故障。
  • 氢是高度易燃的,可以在发生点火源(例如火花或热量)的情况下点燃。

为了减轻这些安全风险,必须制定适当的测试,检查和维护程序。此外,应遵循适当的处理和运输方案,包括严格遵守压力和温度限制以及防止点火源的预防措施。最后,应制定和实施应急响应计划,以解决运输过程中可能发生的任何事件。

需要更新的现有相关标准是什么?

API规范15s,可启动的钢筋塑料管道,覆盖在陆上应用中使用柔性复合管。该标准不涉及二氧化碳的运输,尚未纳入PHMSA的法规。


API Specification 17J,无需柔性管的规范,涵盖了在离岸应用中使用柔性复合管的使用。与15s相似,它不能解决二氧化碳的运输,也没有纳入PHMSA的法规。

相同的建议适用于高密度聚乙烯(HDPE)管道吗?

HDPE管道通常用于供水,排水系统,燃气管道和工业流程等应用中,就柔韧性,易于安装和低维护要求而言,复合管具有相似的优势。它可以组装以创建无缝的接头,从而降低泄漏的风险。它也可以用作每个API规格15LE的衬套进行改造的钢管。


HDPE pipe has been approved by PHMSA to transport natural gas under 49 CFR Part 192. However, the typical operating pressures (e.g., 100 psi) are significantly lower than composite pipe. Similar to composite pipe, there are no standards for the transport of hydrogen and carbon dioxide, though HDPE pipe’s lower pressure limits make it less suited for use in carbon capture and storage.

1
S. Talanki和W. Leong,“比较非金属与金属管制品的温室气体排放(GHG)生命周期评估”(Baker Hughes,2021年)。这项研究包含专有信息。该研究的独立验证可在https://www.bakerhughes.com/company/corporate-responsibility/download-center。
2
贝克·休斯(Baker Hughes),“通过使用复合管减少资本支出和OPEX来保护您的利润:石油和天然气行业如何在不损害质量的情况下降低基础设施生命周期成本”,白皮书,2023年2月25日访问http://www.thermoflexpipe.com。请注意,这种类型的复合管是载管的,因此可能无法代表所有复合管。
3
PHMSA,“国家管道基础设施的状态:初步报告”(美国运输部,2011年)。
4
超临界二氧化碳是二氧化碳的状态,将其加压到成为流体的点。相对于其他州(例如粘度较低),它提供了显着的优势,从而使流动更容易。
5
PHMSA shares oversight of certain offshore pipeline facilities with the Bureau of Safety and Environmental Enforcement. Under the terms of a December 2020 Memorandum of Understanding between the two agencies, PHMSA is responsible for “all OCS pipelines beginning downstream of the point at which operating responsibility transfers from a producing operator to a transporting operator, or downstream of the last valve on the last production facility on the OCS for pipelines that cross into State waters.
6
See 49 CFR part 195.
乐动体育赛事
See all乐动体育赛事